Abstract
The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. A new approach, based on the differential operator sampling technique, is outlined to estimate the derivatives of variance and efficiency with respect to the biasing parameters; the same simulation constructed to solve the primary problem is used. An algorithm requiring the first- and higher order derivatives of the natural logarithm of the second moment to predict minimum-variance-biasing parameters is presented. Equations pertaining to the algorithm are derived and solved numerically for an exponentially transformed one-group slab transmission problem for various slab thicknesses and scattering probabilities. The results indicate that optimization of nonanalog simulations can be achieved so that the present method will be useful in self-learning Monte Carlo schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.