Abstract

The strain Paracoccus sp. QD-19 was isolated from the sludge-water mixture of aerobic tanks at the southern wastewater treatment plant in Shenyang, China. The optimal nitrogen removal conditions for strain QD-19 were determined using the Plackett–Burman design, path of steepest ascent method, and response surface methodology (RSM). The optimum nitrogen removal conditions were C/N 12.93, temperature 37 °C, and shaking speed 175.50 r/min. Strain QD-19 achieved 83.82 ± 0.80 % nitrogen removal efficiency at 10 h under optimum conditions. Functional enzyme-encodinge genes amplified via 16S rRNA sequence analysis included amoA, hao, napA, nirS, nirK, norB, and nosZ. The results revealed that NH4+-N → NH2OH → NO2−-N → NO3‐-N → NO2−-N → NO → N2O → N2 was the pathway for heterotrophic nitrification - aerobic denitrification. The strain was used to treat wastewater from a sewage treatment plant under optimal response surface methodology conditions. As a result, the TN removal efficiency was 77.11 %. The findings demonstrated that strain QD-19 exhibits favorable potential for heterotrophic nitrification and aerobic denitrification (HN-AD) of actual wastewater, presenting a promising application for biological wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call