Abstract

Phosphate is a very important natural resource in Morocco and one of the secondary resources of rare earth elements. Our study is particularly interested in Youssoufia phosphate, which contains 228.77 ppm of rare earth elements (ΣREEs). The purpose of our work is to study the influence of different parameters (acid concentration, solid/liquid ratio and temperature) in order to determine the optimal conditions for the leaching of rare earths. An experimental design (Doehlert matrix) has been drawn up to optimize the experimental conditions of the leaching. All tests were made with nitric acid at different concentrations varying between 1.5M and 4.5M with a solid/liquid ratio of 1/12 to 1/6; reaction temperature and duration are respectively 20°C to 80 °C and 60 min. The optimal conditions are obtained when using 69 °C as temperature, 4.1 M as acid concentration and 1/9 as solid/liquid ratio.

Highlights

  • Phosphate is a very important natural resource in Morocco and one of the secondary resources of rare earth elements

  • The purpose of our work is to study the influence of different parameters in order to determine the optimal conditions for the leaching of rare earths

  • 3.1 Analysis and Characterization of Rock Phosphate 3.1.1 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) REEs contents of phosphate are given in table 2

Read more

Summary

Introduction

Phosphate is a very important natural resource in Morocco and one of the secondary resources of rare earth elements. Our study is interested in Youssoufia phosphate, which contains 228.77 ppm of rare earth elements (ΣREEs). The purpose of our work is to study the influence of different parameters (acid concentration, solid/liquid ratio and temperature) in order to determine the optimal conditions for the leaching of rare earths. An experimental design (Doehlert matrix) has been drawn up to optimize the experimental conditions of the leaching. All tests were made with nitric acid at different concentrations varying between 1.5M and 4.5M with a solid/liquid ratio of 1/12 to 1/6; reaction temperature and duration are respectively 20°C to 80 °C and 60 min. The optimal conditions are obtained when using 69 °C as temperature, 4.1 M as acid concentration and 1/9 as solid/liquid ratio

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.