Abstract

Visual neuroprostheses are a promising approach to restore basic sight in visually impaired people. A major challenge is to condense the sensory information contained in a complex environment into meaningful stimulation patterns at low spatial and temporal resolution. Previous approaches considered task-agnostic feature extractors such as edge detectors or semantic segmentation, which are likely suboptimal for specific tasks in complex dynamic environments. As an alternative approach, we propose to optimize stimulation patterns by end-to-end training of a feature extractor using deep reinforcement learning agents in virtual environments. We present a task-oriented evaluation framework to compare different stimulus generation mechanisms, such as static edge-based and adaptive end-to-end approaches like the one introduced here. Our experiments in Atari games show that stimulation patterns obtained via task-dependent end-to-end optimized reinforcement learning result in equivalent or improved performance compared to fixed feature extractors on high difficulty levels. These findings signify the relevance of adaptive reinforcement learning for neuroprosthetic vision in complex environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.