Abstract

The present article discusses the process of optimizing the structure of artificial neural networks applied in modelling the wear of spheroidal graphite cast iron (SG cast iron). The networks were trained using the RPROP gradient method with the application of the SNNS package supported by original self-developed software, which enabled automatic creation, training and testing of networks with different sizes of hidden layers. Based on the results of an analysis of learning process and testing a package of 625 networks, the network was selected which – when modelling the process of spheroidal cast iron wear – generates the slightest errors during testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.