Abstract

Optimization of network configuration involving the switch statuses is important for the operation in the distribution system. This paper presents a network configuration optimization approach based on the plant growth simulation algorithm (PGSA), which is specially suited to large-scale distribution systems. An elegant design method of the decision variables, which describes the radial feature of the distribution network and considerably reduces the dimension of the variables in the solved model, is developed. Moreover, a detailed description on switch states further improves the efficiency of calculation. The main advantage of the proposed approach in relation to previously published random algorithms is that it does not require any external parameters such as barrier factors, crossover rate, mutation rate, etc. These parameters are hard to be effectively determined in advance and affect the searching performance of the algorithm. The proposed approach is applied to a 33-bus sample system and a large-scale real system. The best solutions of the two systems, which were published in the technical literature, have been found in shorter time than the existing random algorithms. The numerical results demonstrate well the validity and effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call