Abstract
Advanced antibacterial methods are urgently needed to deal with possible infectious diseases. As promising alternatives to antibiotics, enzyme-mimic nanocatalysts face bottlenecks of low activities and indistinct catalytic mechanisms, which seriously restrict their development for anti-infection treatment. Herein, metastable copper sulfide (Cu2-xS) nanozymes with diversiform sizes and compositions were selected to adjust the electronic structure for enhancing enzyme-mimic activities. The as-synthesized large and thin nanoplates (L/TN nanoplates), with the stoichiometric ratio of Cu1.25S, were proven to possess the optimal peroxidase (POD)-mimic activity. Using quantum mechanics, it was theoretically revealed that the sulfur vacancies could alter the electronic structure of copper active sites and thus reduce the reaction energy barrier of H2O2 to·OH to promote the POD-mimic performance. Moreover, through enhanced enzyme-mimic activities, L/TN nanoplates achieved efficient depletion of glutathione and ascorbic acid for improving antibacterial performances. Further, synergizing with the NIR irradiation, the satisfactory destruction capability for bacteria and biofilm was achieved for L/TN nanoplates under an inflammatory level of hydrogen peroxide (50 μM). Altogether, this work provides a deeper understanding of geometrical and electronic properties-dependent antibacterial performance, and paves the way toward precise compositions and structures engineering of nanozymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.