Abstract

Improvements in solar-to-thermal energy conversion will accelerate the development of efficient concentrated solar power systems. Nanofluid volumetric receivers, where nanoparticles in a liquid medium directly absorb solar radiation, promise increased performance over surface receivers by minimizing temperature differences between the absorber and the fluid, which consequently reduces emissive losses. We present a combined modeling and experimental study to optimize the efficiency of liquid-based solar receivers seeded with carbon-coated absorbing nanoparticles. A one-dimensional transient heat transfer model was developed to investigate the effect of solar concentration, nanofluid height, and optical thickness on receiver performance. Simultaneously, we experimentally investigated a cylindrical nanofluid volumetric receiver, and showed good agreement with the model for varying optical thicknesses of the nanofluid. Based on the model, the efficiency of nanofluid volumetric receivers increases with increasing solar concentration and nanofluid height. Receiver-side efficiencies are predicted to exceed 35% when nanofluid volumetric receivers are coupled to a power cycle and optimized with respect to the optical thickness and solar exposure time. This work provides insights as to how nanofluids can be best utilized as volumetric receivers in solar applications, such as receivers with integrated storage for beam-down CSP and future high concentration solar thermal energy conversion systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call