Abstract

Optical ionization of N2 and subsequent population redistribution among the ground and excited states of N2+ in an intense laser field are commonly accepted to be fundamentally responsible for the generation of N2+ lasing. By finely controlling this two-step process, the optimization of N2+ lasing is possibly achieved. Here, we design a waveform-controlled polarization-skewed (PS) pumping pulse, in which the leading and falling edges are orthogonally polarized, and their relative field strength and phase can be well controlled. We demonstrate that precise manipulation of the N2+ lasing at 391 nm and 428 nm emissions can be achieved by modulating both the relative phase and amplitudes of the two orthogonally polarized components of the pumping PS pulse. We find that the optimization of N2+ lasing depends not only on the competitive balance between the ionization and post-ionization coupling that varies in different pumping energies but also on the phase with the maximum intensity appearing at the phase of nπ. Orders of magnitude enhancement in the N2+ lasing intensity is observed as the phase changes from (n+1/2)π to nπ. The PS pulse with a controllable spatiotemporal waveform provides us a robust and straightforward tool to efficiently enhance the N2+ lasing emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call