Abstract

The structural evolution and variation in multiferroic properties induced by sintering conditions were investigated in the 0.67(Sm0.12Bi0.88FeO3)–0.33BaTiO3 ceramics. Sintering at various temperatures induces the transition between tetragonal and cubic phases as well as the variation in distortion degree of oxygen octahedra, contributing to the optimization of multiferroic properties. The magnetoelectric coupling effect is induced by the destabilized cycloidal spin structure resulting from the distortion in FeO6 octahedra, and the magnetoelectric coefficient of the ceramics depends on the destabilized degree in the spin structure, which relates to the sintering temperature. The ceramic sintered at 1000 °C with a relatively high dielectric constant shows a remnant magnetization, remnant polarization and magnetoelectric coupling coefficient of ~ 0.55 emu/g, ~ 8.9 μC/cm2 and ~ 5 mV/(cm · Oe), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call