Abstract
We are building an MRTOF-MS (multi-reflection time-of-flight mass spectrometer) for isobaric separation for the Lanzhou Penning Trap. The potentials applied on the electrodes of our MRTOF mass analyzer operating in in-trap-lift mode have to be optimized to achieve a very high mass resolving power. Our method to design and optimize an MRTOF mass analyzer has been updated to introduce constraints on the potentials, and this method now can be used to optimize the parameters of MRTOF-MS both operating in mirror-switching mode and in in-trap-lift mode. By using this method, the optimal potential parameters of the electrodes have been obtained for our MRTOF mass analyzer operating in the in-trap-lift mode. With a beam size of 2.8 mm diameter and an initial average ion kinetic energy of 1500 eV, the maximal mass resolving power has been achieved to be $$3.2\times 10^4$$ with a total TOF of 7.0 ms for an ion species of $$^{40}$$ Ar $$^{1+}$$ . It can reach up to $$5.6\times 10^4$$ for a beam size of 0.3 mm diameter. The simulation shows that the inaccuracy of the potentials applied on the outermost mirror electrodes M1–M2 must be less than 50 ppm or preferably 20 ppm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.