Abstract
This work introduces the support vector rank regression (SVRR) algorithm for the optimization of molecular docking scores. Seven original docking scores reported by two docking software were integrated by the SVRR algorithm. The resulting SVRR scores showed an average of 12.1% improvement (59.5-66.7%) in binding conformation prediction tests to rank the correctly computed conformation in the first place, along with 16.7% RMSD improvement (2.5414 vs. 2.1162 Å) for the top ranked conformations. In compound library screening (LS) tests, an average of 46.3% improvement (18.2-26.6%) was also observed to rank the correct ligand in the first place. Furthermore, it was shown that SVRR scores trained with different example datasets, using different training strategies, all exhibited exceedingly consistent accuracies, suggesting that the SVRR algorithm is highly robust and generalizable. In contrast, using the same training datasets, traditional support vector classification and regression algorithms failed to improve comparably the accuracy of LS and conformation prediction. These results suggested that, with additional features to indicate the comparative fitness between computed binding conformations, the SVRR algorithm holds the potential to create a new category of more accurate integrative docking scores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.