Abstract

We demonstrate an automatic materials design method using continuous representation of molecule and its atomic arrangement via a neural network algorithm. This method is applied to optimizing and predicting the HOMO-LUMO gap within the molecules composed of carbon, oxygen, nitrogen, fluorine, and hydrogen. Adopting the Quantum Machine 9 (QM9) dataset as a training dataset for the molecules, we first established a continuous representation of molecules in a latent space, then predicted molecules that have target values of the HOMO-LUMO gap. In the gap maximization calculation, the CF4 with the largest gap value in the QM9 dataset was automatically found despite there is no a priori data for the gap. In the case of a target gap value of 0.10 hartree, we found a new molecule whose gap value is closer to 0.10 hartree than any other molecules in the QM9 dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.