Abstract

Hyperspectral unmixing is essential for efficient hyperspectral image processing. Nonnegative matrix factorization based on minimum volume constraint (MVC-NMF) is one of the most widely used methods for unsupervised unmixing for hyperspectral image without the pure-pixel assumption. But the model of MVC-NMF is unstable, and the traditional solution based on projected gradient algorithm (PG-MVC-NMF) converges slowly with low accuracy. In this paper, a novel parallel method is proposed for minimum volume constrained hyperspectral image unmixing on CPU–GPU Heterogeneous Platform. First, a optimized unmixing model of minimum logarithmic volume regularized NMF is introduced and solved based on the second-order approximation of function and alternating direction method of multipliers (SO-MVC-NMF). Then, the parallel algorithm for optimized MVC-NMF (PO-MVC-NMF) is proposed based on the CPU–GPU heterogeneous platform, taking advantage of the parallel processing capabilities of GPUs and logic control abilities of CPUs. Experimental results based on both simulated and real hyperspectral images indicate that the proposed algorithm is more accurate and robust than the traditional PG-MVC-NMF, and the total speedup of PO-MVC-NMF compared to PG-MVC-NMF is over 50 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.