Abstract

This study presents a novel cell docking system based on microwells integratded with microvalves. Conventional cell docking device based on micro-well suffers from generation of dead volume and shear stress within micro-wells resulting in low efficiency of cell docking, limitation of nutrient, and low cell viability. Our approach to solve the problems adopts integration of microvalve controlled by pressure with microwells for provinding guided flow stream of cells and nutrients into microwell. We have optimized the efficiency of cell docking by varying several experimental parameters including flow rate, cell concentration, microvalve pressure, and size of microvalve. Under the optimized flow rate (1 µL/sec) and valve pressure (0.2 MPa), we obtain high efficiency of cell docking as 14.1 cells/microwell. In this study, we confirm that the perfusion culture of cells in microfluidic chip provides suitable environmental condition for cell culture at small scale and demonstrate the feasibility of universal cell culture platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.