Abstract

The application of novel heterogeneous catalyst materials with unique physicochemical properties for the production of biodiesel can increase the sustainability of the process. In this study, a novel heterogeneous nanocatalyst (NCT) was developed and improved using a microreactor for biodiesel production from used cooking oil (UCO). The NCT was developed based on double-layered bimetal titanium-zirconium oxide nanoparticles (NPs) incorporated over magnetic graphene oxide (ZrO2-TiO2@MGO) using a simple hydrothermal method. The physiochemical morphology of newly developed NCT materials of ZrO2-TiO2 NPs and ZrO2-TiO2@MGO was investigated using FESEM, FTIR, VSM, XRD, and EDX. The effects of several independent variables, including residence duration (60–180 s), oil/methanol molar ratio (1–3), and catalyst concentration (1–5 wt.%) on biodiesel production yield were optimized. The optimum reaction conditions in the microreactor-intensified transesterification process were the ZrO2-TiO2@MGO concentration of 4.75 wt.% (oil-based), reaction duration of 180 s, and oil/ methanol ratio of 2.33. The designed microreactor-assisted ZrO2-TiO2@MGO provided a conversion rate of 99.32%. Consequently, the results revealed that the microreactor effectively shortens the transesterification time while producing a high rate of biodiesel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call