Abstract

It is stated that membrane elements, due to axial concentration and flow exhaustion during filtration, work in different operation conditions that differ according to various characteristics. Designing of multistage units is based on technical characteristics' identity of all membrane elements. It is explored that the difference in individual characteristics of membrane elements can take place. This can essentially affect the operation characteristics of a whole industrial unit. Particularly, it could lead to degradation of the permeate quality and the unit performance. Research on packaging the membrane elements in reverse osmosis units has shown that a simple replacement of membrane elements without the consideration of the individual characteristics can degrade the performance characteristics and affect the constancy of the unit operation. An optimization system of membrane elements’ array was suggested to solve these problems and to upgrade the performance of reverse osmosis plants. The first step of the system is determination of individual characteristics of membrane elements. For the calculations using the individualized data, it is suggested to use the method of approximate calculation and the balance equations for water flows (source water, permeate, and retentate), and for the concentrations of the dissolved solids. The suggested optimization system of a membrane elements’ array allowed the configuration of the membrane elements in the housings of one stage in such a way that the symmetry of the flows and of the pressure difference was achieved. The optimum value of the performance and the selectivity was achieved considering the hydraulic characteristics in one stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call