Abstract

The melting performance of a rotating triplex-tube latent heat thermal energy storage unit is studied by numerical simulation method. The Taguchi design and response surface method are applied to its optimized design. Firstly, the Taguchi design method is used to quantitatively reveal the specific effects of fin distribution, fin number, and fin material on the melting performance of the unit. Compared with all-inner tube-fin or all-outer tube-fin structures, the melting time of alternating inside and outside fin structures is shortened by 52.64% and 32.42%, the average heat absorption rate is greatly increased by 105.56% and 47.26%, and the total heat is reduced by 2.64% and 2.17%, respectively. Then, the response surface method is applied to the eight alternating fins obtained by the Taguchi design, and the effects of fin length, width, and rotation angle on the melting time and average heat absorption rate of the unit are studied. Compared with the original structure, the optimal structure reduces the total melting time by 7.37% and increases the average heat absorption rate by 7.23%. The geometric parameters’ interaction with the relevant target response is studied, and the corresponding fluid-structure interaction equation is fitted. Finally, the melt growth phenomenon near the wall is found in the initial melting stage of the optimized model by mechanism analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.