Abstract
Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production.
Highlights
IntroductionSince the energy crisis and climate change have been major challenges we are facing, it is essential to develop novel energy forms, which are sustainable and friendly to the environment [1,2]
In recent years, since the energy crisis and climate change have been major challenges we are facing, it is essential to develop novel energy forms, which are sustainable and friendly to the environment [1,2].As an ideal and effective alternative fuel, biofuel has drawn more and more attention of researchers
The lipid production was the product of lipid content and biomass, the importance of which is above the lipid content and growth rate individually
Summary
Since the energy crisis and climate change have been major challenges we are facing, it is essential to develop novel energy forms, which are sustainable and friendly to the environment [1,2]. As an ideal and effective alternative fuel, biofuel has drawn more and more attention of researchers. Three generations of biofuel feedstocks have been developed [3]. Compared to the first and second generation (food crops, non-food crops), microalgae, a third generation biofuel feedstock, have been indicated as a superior replacement, because of their capability to grow rapidly and produce abundant triacylglycerols (TAG). Producing oils by microalgae does not result in a discord between food and fuel [4,5,6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.