Abstract

In the present paper the effect of the diatomite, also known as diatomaceous earth and kiesel guhr (KG), content on mechanical, thermo-mechanical, melt-flow and thermal performance of thermoplastic polyurethane-based composites was investigated. Composites were fabricated by melt blending method with 10, 20, 30 and 40% filling ratios of KG. and injection molded test samples were characterized using tensile, hardness, dynamic mechanical analysis (DMA), melt flow index (MFI), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) analysis. According to test results, KG inclusions effect mechanical, thermal and morphological properties of composites positively up to 30% KG content. Further addition of KG caused remarkable reductions in related properties. Tensile strength of unfilled TPU exhibited increasing trend and elongation showed no obvious difference after KG loadings. TPU/KG composites yield relatively higher MFI values with respect to unfilled TPU. Glass transition temperature of TPU shifted to 6 points higher value by the help of KG incorporation. TGA findings revealed that KG additions caused improvement for thermal stability of TPU. Homogeneous dispersion of KG particles for their lower content, whereas agglomorate formations for higher loading level of KG were confirmed by SEM micrographs. TPU composite containing 10% KG showed the highest results among samples. • Diatomite additions yield positive impact on mechanical and thermal behaviors of polyurethane elastomer. • Thermal stability of TPU was enhanced by inclusion of diatomaceous earth. • Composites exhibited higher MFI parameter compared to TPU which was attributed to porous structure of diatomite. • Homogeneous dispersion of diatomite particles into TPU matrix at lower filling ratios was confirmed by SEM analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call