Abstract

Ti-Cu alloys with different Cu contents (3, 5 and 7 wt%) were fabricated and studied as novel antibacterial biomaterials for dental application. The Ti-Cu alloys were annealing treated at different temperatures (740 °C, 830 °C and 910 °C) in order to obtain three typical microstructures, α-Ti + Ti2Cu, α-Ti + transformed β-Ti, and transformed β-Ti. Mechanical, antibacterial and biocorrosion properties of Ti-Cu alloys with different microstructures were well analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), tensile test, electrochemical test and antibacterial test. The results indicated that the Ti-Cu alloys with microstructure of α-Ti + Ti2Cu showed the best ductility compared with other Ti-Cu alloys with microstructures of α-Ti + transformed β-Ti and complete transformed β-Ti, and meanwhile, increase of the Cu content significantly contributed to the decreased ductility due to the increasing amount of Ti2Cu, which brought both solid solution strengthening and precipitation strengthening. Finally, the Ti-5Cu alloy with microstructure of α-Ti + Ti2Cu exhibited excellent ductility, antibacterial property and corrosion resistance, providing a great potential in clinical application for dental implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.