Abstract

PurposeThe Bernoulli gripper fixedly installed on the manipulator is subject to limitations such as a small-working region and poor anti-interference capacity. This paper aims to propose a novel Bernoulli gripper design that involves the connection of a positive stiffness component such as a spring in series, based on the force characteristic curve synthesis method, to optimize the mechanical performance.Design/methodology/approachThe proposed gripper is designed and manufactured. In the suction procedure, the force characteristic curve of the proposed gripper is theoretically and experimentally investigated. In the hovering detection procedure, a dynamic model of the manipulator-gripper-workpiece system is established, and an apparatus is set up to compare the displacements of the workpiece and the manipulator. The proposed gripper is finally applied in the lifting procedure, showing good impact resistance.FindingsThe optimization of mechanical performance of the proposed gripper is realized. The proposed gripper has the effect of increasing the stiffness of the negative stiffness part of the force characteristic curve and reducing the stiffness of the positive stiffness part, increasing the working region. The stability and the anti-interference ability of the workpiece under high-frequency vibration are improved. Meanwhile, the impact resistance in the lifting procedure is enhanced, compared with the original one.Originality/valueThis research proposes a novel design for the Bernoulli grippers to optimize the mechanical performance. The proposed gripper has advantages of a larger working region, better anti-interference ability and better impact resistance. These findings serve as important theoretical and experimental references for the design of the Bernoulli gripper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call