Abstract

In the study of chip heat dissipation, micro-channel heat sinks have been widely used. Microchannel heat sink have a variety of structures, among which the manifold structure is used more because of its better heat dissipation performance. However, the manifold structure has the problem of uneven flow distribution. In order to solve this problem, this paper uses the principle of similar flow resistance and resistance to establish the equivalent resistance model of the manifold microchannel. This model simulates the equivalent resistance network by MATLAB, simulates the change of the flow channel by changing R r , simulates the change of the distribution channel by changing R d , and simulates the outlet position by changing the position of the negative electrode of the power supply. The results of the circuit simulation are used as a direction guide, and thermal simulation is performed using COMSOLTM. The optimization of the reaction channel, the distribution channel and the outlet position of the manifold structure is completed. Finally, a uniform flow distribution was achieved, and the variance of the surface temperature of the heat source was reduced by 66%. It can be seen from experiments that the equivalent resistance model has an important role in guiding the optimization direction in the research of microchannel heat sink with manifold structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.