Abstract

Abstract The effect of bottomhole-pressure (BHP) drawdown schedule on the well performance is generally attributed to the stress sensitivity in propped finite-conductivity fractures. The purpose of this work is to develop a detailed workflow of optimizing BHP drawdown schedule to improve long-term performance by finding a tradeoff between delaying conductivity degradation and maintaining drawdown. First, according to experimental data of propped fracture, an alternative relationship between conductivity and pressure drawdown is developed to mimic the change of fracture conductivity with effective stress. Second, based on the dimension-transformation technique, the coupled fracture-reservoir model is semi-analytically solved and seamlessly generates the time-dependent equation (i.e., transient inflow performance relationship (IPR)) which provides the production rate response to any BHP variation. Next, the value of BHP on the reversal behavior of rate is defined as the optimum BHP on the specified time-dependent IPR, and then the optimum profile of BHP drawdown over time is achieved. Finally, we corroborate the effectiveness of this workflow with a field case from Zhaotong shale in China. Field case substantiates that (1) the well with restricted drawdown has more advantage of improving the performance than that with unrestricted drawdown and (2) after inputting the optimum BHP drawdown into the history-unrestricted case, the long-term cumulative gas production could indeed be increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.