Abstract
In this work, the recovery of magnesium from desalination reject brine through reaction with ammonia has been evaluated and statistically optimized using response surface methodology. The process is based on precipitation of magnesium hydroxide by the reaction of MgCO3 in the brine with ammonium hydroxide. A software, which is designed for studying chemical reaction and equilibrium, was employed to perform the thermodynamic analysis of the reaction of magnesium carbonate with ammonia, which was found to be exothermic and spontaneous in the temperature range of 0–22 °C. Central composite design (5-level, 3-factor) was used to optimize the process to obtain the maximum response of magnesium recovery as a function of reaction temperature, brine salinity, and ammonia to magnesium molar ratio. Maximum recovery of 99% was obtained at a temperature of 15 °C, brine salinity of 85 g/L, and a molar ratio of 4.4NH3: 1 Mg. The predicted response was in excellent agreement with the experimental results. The collected solid product at optimum conditions was characterized using X-ray Diffraction, Energy Dispersive Spectra analysis and thermogravimetric analysis. The analysis indicated the high purity of the recovered product in the form of Brucite (Mg(OH)2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.