Abstract
This paper deals with the analysis of surface roughness in turning GFRP composite through experimental investigation and Response surface methodology (RSM) based optimization modeling incorporated with Genetic Algorithm (GA). The investigation has been carried out in dry condition where cutting speed, feed rate and depth of cut has been considered as input parameters to check the desired surface roughness response. This experiment has been designed using RSM central composite design (CCD). Afterwards the response model has been formulated using quadratic RSM model and Genetic algorithm. The correlation coefficient value of 0.9989 suggests the adequacy of the formulated model. Main effect plot and 3D surface plot have been used to evaluate the effect of input parameters followed by Desirability Function Analysis (DFA) through response surface equation of the machining response. Machining parameters were then optimized using GA approach which indicated that to attain advantageous machining response cutting speed and feed rate need to be at 78 m/min and 0.10 mm/rev respectively. These findings are also analogous with the result of DFA which validates both the model. By employing the model, surface roughness of as minimum as 0.056 µm can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.