Abstract

Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to recover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was performed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy efficiency or power output as the objective function by means of Penalty Function and Golden Section Searching algorithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.