Abstract

A computational fluid dynamic (CFD) model was developed to study the fluid flow phenomena taking place in an industrial tundish. Numerical results showed spatial distributions of the velocity vectors, the residence time and fields of turbulence kinetic energy. Selected computer simulation results were validated with experimental data. The effect of the impact pad and interior dams on the hydrodynamics of liquid steel flow were studied numerically and optimized to reduce the fraction of dead volume zones and augment nonmetallic inclusions to float into the slag. A novel design of a turbo-stopper was proposed and its function to decelerate the ladle shroud jet and direct the flow back to reduce slag entrapment was discussed. Such numerical results improved our understanding of the hydrodynamics of liquid steel flow in the tundish and contribute to an optimized operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.