Abstract

The asialoglycoprotein receptor (ASGPR) is a potential target in the search for hepatic cancer drugs. However, application of ASGPR targeting in the clinic is limited by inefficient synthetic methods for the ligand. In this study, we designed and synthesized a novel galactosylated lipid with a mono-galactoside moiety using a lipase. Then we investigated the optimal reaction conditions and analyzed the targeting ability of liposomes modified with the galactosylated lipid. In an organic phase system, different lipases were used as catalysts to synthesize (5-cholesten-3b-yl) [(4-O-β-D-galactopyranosyl)D-glucitol-6] sebacate (CHS-SE-LA). Variables in enzymatic esterification, such as the type of enzyme and solvent, were explored by single-factor experiments. Optimal reaction conditions were determined through response surface methodology. The (CHS-SE-LA)-incorporated galactosylated liposome containing fluorescent dye was then prepared by thin-film hydration and a HepG2 cell transfection test used to confirm the targeting efficiency of galactosylated liposomes to hepatic cancer cells. The structure of CHS-SE-LA was identified by electrospray ionization or ESI and nuclear magnetic resonance or NMR. Under optimal conditions, the predicted yield of CHS-SE-LA was 94.3%, and the actual experimental value was 95.6 ± 1.35%, n = 3. For HepG2 cells, the cellular fluorescence intensities of liposomes modified with CHS-SE-LA (galactosylated liposomes [GAL-FL]) were as much as 2.6-fold (P < 0.01) the control liposomes (FL). Moreover, the presence of excess galactose significantly inhibited the uptake of GAL-FL suggesting ASGPR mediated uptake. The novel galactosylated ligand was synthesized enzymatically with high efficiency under mild conditions. Liposomes containing CHS-SE-LA have great potential as drug delivery carriers for hepatocyte-selective targeting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call