Abstract

The linear consecutive-k-out-of-n: failure (good) (Lin/Con/k/n:F(G)) system consists of n interchangeable components that have different reliabilities. These components are arranged in a line path and different component assignments change the system reliability. The optimization of Lin/Con/k/n:F(G) system is to find an optimal component assignment to maximize the system reliability. As the number of components increases, the computation time for this problem increases considerably. In this paper, we propose a Birnbaum importance-based ant colony optimization (BIACO) algorithm to obtain quasi optimal assignments for such problems. We compare its performance using the Birnbaum importance based two-stage approach (BITA) and Birnbaum importance-based genetic local search (BIGLS) algorithm from previous researches. The experimental results show that the BIACO algorithm has a good performance in the optimization of Lin/Con/k/n:F(G) system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.