Abstract
Undoubtedly, music possesses the transformative ability to instantly influence an individual's mood. In the era of the incessant flow of substantial data, novel music compositions surface on an hourly basis. It is impossible to know for an individual whether he/she will like the song or not before listening. Moreover, an individual cannot keep up with this flow. However, with the help of Machine Learning (ML) techniques, this process can be eased. In this study, a novel dataset is presented, and song suggestion problem was treated as a binary classification problem. Unlike other datasets, the presented dataset is solely based on users' preferences, indicating the likeness of a song as specified by the user. The LightGBM algorithm, along with two other ML algorithms, Extra Tree and Random Forest, is selected for comparison. These algorithms were optimized using three swarm-based optimization algorithms: Grey Wolf, Whale, and Particle Swarm optimizers. Results indicated that the attributes of the new dataset effectively discriminated the likeness of songs. Furthermore, the LightGBM algorithm demonstrated superior performance compared to the other ML algorithms employed in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Systems: Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.