Abstract

Changing the relative phase Δϕ between the fundamental and harmonic waves produces periodic power modulation of a laser intracavity second-harmonic generated wave. The periodic power modulations of the two counterpropagating second-harmonic waves are at exactly opposite phases. This behavior is different from that in the case of intracavity second-harmonic generation in a passive cavity. A phenomenological numerical model developed for a laser consists of double-pass second-harmonic generation. The steady-state plane-wave model incorporates second-order nonlinear interaction, laser gain, and linear dispersion that contribute to the phase difference Δϕ. The model predictions are in good agreement with the experimental results. The model is useful for optimization of laser intracavity second-harmonic generation, and it may be applied to different types of intracavity nonlinear interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.