Abstract

Methylosinus trichosporium OB3b is a methanotrophic bacterium containing particulate methane monooxygenase (MMO), which catalyzes the hydroxylation of methane to methanol. The methanol is further oxidized to formaldehyde by methanol dehydrogenase (MDH). We developed a novel compulsory circulation diffusion system for cell cultivation. A methane/air mixture (1:1, v/v) was prepared in a tightly sealed gas reservoir and pumped into a nitrate mineral salt culture medium under optimal conditions (5 μM CuSO4, pH 7.0, 30°C). Cells were harvested, washed, and resuspended (0.6 mg dry cells/mL) in a 500 mL flask in 100 mL of 10 mM phosphate buffer (pH 7.0) containing 100 mM NaCl and 1 mM EDTA as MDH inhibitors, and 20 mM sodium formate. A single 12 h batch reaction at 25°C yielded a final concentration of 13.2 mM methanol. The use of a repeated batch mode, in which the accumulated methanol was removed after each of three 8 h cycles over a 24 h period, showed a productivity of 2.17 μmol methanol/h/mg dry cell wt. Finally, a lab-scale reaction performed using a 3 L cylindrical reactor with a working volume of 1 L produced 13.7 mM methanol after 16 h. Our results identify a simple process for improving the productivity of biologically derived methanol and, therefore the utility of methane as an energy source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call