Abstract

We report on the optimization of La 2O 3-containing diopside based glass-ceramics (GCs) for sealant applications in solid oxide fuel cells (SOFC). Seven glass compositions were prepared by modifying the parent glass composition, Ca 0.8Ba 0.1MgAl 0.1La 0.1Si 1.9O 6. First five glasses were prepared by the addition of different amounts of B 2O 3 in a systematic manner (i.e. 2, 5, 10, 15, 20 wt.%) to the parent glass composition while the remaining two glasses were derived by substituting SrO for BaO in the glasses containing 2 wt.% and 5 wt.% B 2O 3. Structural and thermal behavior of the glasses was investigated by infrared spectroscopy (FTIR), density measurements, dilatometry and differential thermal analysis (DTA). Liquid–liquid amorphous phase separation was observed in B 2O 3-containing glasses. Sintering and crystallization behavior, microstructure, and properties of the GCs were investigated under different heat treatment conditions (800 and 850 °C; 1–300 h). The GCs with ≥5 wt.% B 2O 3 showed an abnormal thermal expansion behavior above 600 °C. The chemical interaction behavior of the glasses with SOFC electrolyte and metallic interconnects, has been investigated in air atmosphere at SOFC operating temperature. Thermal shock resistance and gas-tightness of GC sealants in contact with 8YSZ was evaluated in air and water. The total electrical resistance of a model cell comprising Crofer 22 APU and 8YSZ plates joined by a GC sealant has been examined by the impedance spectroscopy. Good matching of thermal expansion coefficients (CTE) and strong, but not reactive, adhesion to electrolyte and interconnect, in conjunction with a low level of electrical conductivity, indicate that the investigated GCs are suitable candidates for further experimentation as SOFC sealants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call