Abstract

The Soil Moisture and Ocean Salinity (SMOS) satellite, launched in November 2009, carries the first interferometric radiometer at L-band (1.4 GHz) in orbit. Over the open ocean and for moderate wind speeds (WSs), the SMOS brightness temperatures (TB) are at first order consistent with simulated TB of theoretical prelaunch models implemented in the European Space Agency Level 2 Ocean Salinity processor. However, we found large discrepancies between measurements and model simulations when WS is above 12 ms-1. A new set of parameters for a sea wave spectrum and a foam coverage model that can be used for simulating L-band radiometer data over a large range of WS is proposed based on the deduced wind-induced components from the SMOS data. The quality of the SMOS retrieved sea surface salinity (SSS) with the new emissivity model is estimated by comparing it with the World Ocean Atlas 2005 climatological SSS and the Array for Real-Time Geostrophic Oceanography (ARGO) SSS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.