Abstract

In this study, innovative nanocomposite materials for material extrusion (MEX) 3D printing were developed using a polypropylene (PP) polymer with tungsten carbide (WC) nanopowder. The raw materials were converted into filaments using thermomechanical extrusion. The samples were then fabricated for testing according to the international standards. Extensive mechanical testing was performed on the 3D-printed specimens, including tensile, impact, flexural, and microhardness assessments. In addition, the impact of ceramic additive loading was examined. The thermal and stoichiometric characteristics of the nanocomposites were examined using thermogravimetric analysis, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, and Raman spectroscopy. The 3D-printed shape, quality, and fracture process of the specimens were examined using scanning electron microscopy. The results showed that the filler significantly enhanced the mechanical characteristics of the matrix polymer without reducing its thermal stability or processability. Notably, the highest level of nanocomposite mechanical responsiveness was achieved through the inclusion of 6.0 and 8.0 wt. % fillers. The 10.0 wt. % loading nanocomposite showed significantly increased microhardness, indicating a possible high resistance to wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call