Abstract

We design and implement an intelligent IoT-based motion monitoring system to realize the monitoring of three important parameters, namely, the type of movement, the number of movements, and the period of movement in physical activities, and optimize the system to support the simultaneous use by multiple users. Considering the motion monitoring scenario for smart fit, the framework of an IoT-based motion monitoring system is proposed. The framework contains components such as active acquisition nodes, wireless access points, data processing servers, and terminals. In terms of algorithm optimization, research related to active pattern recognition and periodic calculation methods is conducted. For active pattern recognition, two types of classification algorithms with different complexity are proposed based on Support Vector Machine (SVM) and deep neural networks, respectively, to adapt to scenarios with different computational capabilities. For period calculation, a method based on over-zero detection and wavelet transform is proposed to count the number of actions and calculate the period of each action. In 100 times action cycle calculation experiments, the count statistic calculation method achieves 100% calculation accuracy and the active cycle calculation results are close to the real value, which proves the effectiveness of the cycle calculation method. The system provides a multiuser-oriented communication method and realizes accurate and reliable human movement monitoring, which has a wide application prospect in the fields of physical education and rehabilitation training.

Highlights

  • Introduction eInternet of ings is an important part of the new generation of information technology and an important development stage of the information age

  • We design and implement an intelligent IoT-based motion monitoring system to realize the monitoring of three important parameters, namely, the type of movement, the number of movements, and the period of movement in physical activities, and optimize the system to support the simultaneous use by multiple users

  • Is paper designs an end-to-end limb movement monitoring platform, which uses a wearable bracelet for movement data collection, and uses Wi-H supporting multiple users to transfer the data to the cloud, where the data can be analyzed in the cloud server for movement pattern recognition, movement count, and movement cycle calculation. e platform allows the simultaneous use of multiple users for limb movement monitoring and provides a more comprehensive and accurate analysis and description of the movements. e proposed monitoring algorithms for limb movements include an action recognition algorithm and periodic calculation method

Read more

Summary

Research Article

Received 19 March 2021; Revised 7 April 2021; Accepted 10 April 2021; Published 19 April 2021. We design and implement an intelligent IoT-based motion monitoring system to realize the monitoring of three important parameters, namely, the type of movement, the number of movements, and the period of movement in physical activities, and optimize the system to support the simultaneous use by multiple users. Two types of classification algorithms with different complexity are proposed based on Support Vector Machine (SVM) and deep neural networks, respectively, to adapt to scenarios with different computational capabilities. Is paper designs an end-to-end limb movement monitoring platform, which uses a wearable bracelet for movement data collection, and uses Wi-H supporting multiple users to transfer the data to the cloud, where the data can be analyzed in the cloud server for movement pattern recognition, movement count, and movement cycle calculation. In terms of period calculation, wavelet transform and over-zero monitoring-based limb action period calculation are studied to achieve high-precision active count statistics and active period calculation

Related Works
User management
Fai Fbi Fci
Results and Analysis
Tester ID
Model result
Number of actions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.