Abstract
Inverted tandem organic solar cells, consisting of two bulk heterojunction sub-cells with identical poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C 61 (PCBM) active layer and a MoO 3/Ag/Al/Ca intermediate layer, have been presented and optimized. Indium tin oxide (ITO) modified by Ca acts as a cathode for electron collection and Ag is used as the anode for hole collection for the tandem device. A proper thickness of Ca (3 nm) forms a continuous layer, working as a cathode for the top sub-cell. MoO 3 as the anode buffer layer prevents exciton quenching and charge loss at the anode side, which could result in increase in interfacial resistance. The variance of sub-cell thickness adjusts the optical field distribution in the entire device, facilitating light absorption and good current matching in both sub-cells. The optimal inverted tandem device achieves a maximum power conversion efficiency of 2.89% with a short-circuit current density of 4.19 mA/cm 2, an open-circuit voltage of 1.17 V, and a fill factor of 59.0% under simulated 100 mW/cm 2 (AM 1.5G) solar irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.