Abstract

Despite the successful use of the Standard model in simulating turbulent flow for many industrially relevant flows, the model is still less accurate for a range of important problems, such as unconfined flows, curved boundary layers, rotating flows, and recirculating flows. As part of the authors’ effort to extend the model applicability and reliability, this paper aims to study the effects of diffusivity parameter called the turbulent Prandtl number of dissipation rate () on the Standard model performance for predicting recirculating flow in a crossflow water turbine. The value of this parameter was varied from 0.5 to 1.5 in the CFD simulations, and the results were compared to the more sophisticated model, namely the RNG , which has been first qualitatively validated by an experimental result. In addition, the parameter value was also adjusted using the Multi-Linear Regression (MLR) method ranging from 0.42 to 1.5 to complement the CFD simulations. It was observed that reducing the value is effective in minimizing the average deviation of the turbulence properties concerning the RNG model. However, the adjusted model still faces difficulty in accurately predicting the pressure and velocity field. Based on this result, adjusting the constant in the Standard turbulence model has the potential to improve the model performance for modelling recirculating flow in terms of the turbulence properties, but still needs further investigation for the flow properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.