Abstract

Derivative-based algorithms have been adopted in the literature for the optimization of membership and non-membership function parameters of interval type-2 (T2) intuitionistic fuzzy logic systems (FLSs). In this study, a non-derivative-based algorithm called sliding mode control learning algorithm is proposed to tune the parameters of interval T2 intuitionistic FLS for the first time. The proposed rule-based learning system employs the Takagi–Sugeno–Kang inference with artificial neural network to pilot the learning process. The new learning system is evaluated using some nonlinear prediction problems. Analyses of results reveal that the proposed learning apparatus outperforms its type-1 version and many existing solutions in the literature and competes favorably with others on the investigated problem instances with low cost in terms of running time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.