Abstract

AbstractAn industrial Cu‐based low‐temperature water‐gas shift (LTWGS) reactor, subject to deactivation by irreversible chlorine adsorption, has been modeled and optimized. Both the chlorine adsorption kinetics and deactivation kinetics were assumed first order to chlorine partial pressure, and the rate constants were considered independent of temperature. The Efficient Production (EP) method has been used to compute the reactor production until the outlet CO conversion decays below a permissible minimum level. Two alternative strategies for the inlet temperature have been used to maximize the EP: constant and time‐variable. Compared to the EP obtained for the optimum constant inlet temperatures, EP resulting from the use of the optimum time‐variable inlet temperature sequence were higher, affording important energy savings. Furthermore, a sensitivity study with respect to most influential operational variables, such as inlet total flow rate, steam‐to‐gas ratio, pressure, and concentrations of chlorine, hydrogen, carbon monoxide, and inert content, was carried out. © 2005 American Institute of Chemical Engineers AIChE J, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.