Abstract
AbstractThis study analyzed contour distortions, wear and tensile properties of polypropylene (PP) components applied in the interior coffer of automobiles. A hybrid method integrating a trained generalized regression neural network (GRNN) and a sequential quadratic programming (SQP) method is proposed to determine an optimal parameter setting of the injection‐molding process. The specimens were prepared under different injection‐molding conditions by changing melting temperatures, injection speeds, and injection pressures. Average contour distortions at six critical locations, wear and tensile properties were selected as the quality targets. Sixteen experimental runs, based on a Taguchi orthogonal array table, were utilized to train the GRNN and then the SQP method was applied to search for an optimal setting. The trained GRNN was capable of predicting average contour distortions, wear and tensile properties at various injection‐molding conditions. In addition, the analysis of variance (ANOVA) was implemented to identify significant factors for the molding process and the proposed algorithm was compared with traditional schemes like the Taguchi method and the design of experiments (DOE) approach. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.