Abstract

Microbially induced calcite precipitation (MICP) is a promising, more eco-friendly alternative method for landslide prevention and foundation reinforcement. In this study, we investigated the optimization of injection methods within the MICP process in porous media to enhance calcite mass and consolidation effect. The results demonstrated that staged injections with considerable advantages significantly improved precipitated calcite mass by 23.55% compared with continuous injection methods. However, extended retention times in staged injections reduced reinforcement effects. Moreover, setting the additional time in all injection methods can improve the consolidation area and effect without added injections. Apart from the injection methods, the changes in porosity and substance concentration also directly affected calcite masses and the reinforcement effect. Both the total calcite mass and the reinforcement effect should be taken into account when selecting appropriate injection methods. In terms of influencing factors on the total calcite mass, substance concentration ≫ average porosity ≫ additional time > retention time in staged injection. For the consolidation effect, substance concentration ≫ retention time in staged injection > average porosity ≫ additional time. The 5 h retention time in staged injections was recommended as the optimum injection method in the geotechnical conditions for average porosity from 0.25 to 0.45, with the changes in different reactant concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call