Abstract

As a key component of next-generation photovoltaic technology, quantum well solar cells (QWSCs) have received great attention in the past few years. The growth characteristics and structure of III/V materials also provide a new choice for QWSCs. In this paper, a novel multi-quantum well solar cell is proposed, in which InGaAs/InGaAsP quantum wells (QWs) are inserted in the intrinsic region of the PIN structure, and the thickness, number and position of the QWs are optimized. Compared with ordinary solar cells, the short-circuit current (Jsc ) increased from 30.25mA/cm2 to 42.65mA/cm2, and the cell efficiency increased to 27.4%. Then, after adding an anti-reflection layer (ARC) on top of the QWSCs, Jsc has increased another 7mA/cm2 on average on the basis of previous one. It is clear that InGaAs/InGaAsP QWSCs absorb more incident sunlight. Furthermore, the influence on Jsc of the different position of QWs in the intrinsic region is also discussed. The results show that placing the QWs on top of the intrinsic region maximizes the efficiency of the solar cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.