Abstract
The spread of an infectious disease such as COVID-19 is governed by complex social interactions that are challenging to model. Policy makers must take measures to control the spread of infection despite the unknowns that accompany a novel epidemic. The principles of artificial life govern the intricacies of social interaction through which diseases can spread. Agent-based models can capture these complexities for a subset of the population by defining the behavior of individual agents. While they can be computationally expensive for large populations, their outcomes are stochastic. Therefore, they can be used to test disease prevention policies, that can be difficult to simulate using deterministic approaches. We developed an agent-based model that is inspired by several interactive simulations on the internet for describing the COVID-19 pandemic. We define metrics to estimate the socio-economic cost of disease prevention policies on the population. We present a policy-making tool based on blackbox optimization and evolutionary computation that provides well-rounded intervention measures in terms of socio-economic cost and disease control. Several intervention measures are suggested by the algorithms with varying degrees of disease control and socio-economic cost. Policy makers can choose an intervention measure based on their preference. This research recommends combining computational intelligence principles and the use of mathematical algorithms for identifying the critical amount of intervention necessary to control infectious diseases and formulate intervention policies that minimize socio-economic cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Emerging Topics in Computational Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.