Abstract

Arithmetic circuits in general do not match specifications exactly, leading to different implementations within allowed imprecision. We present a technique to search for the least expensive fixed-point implementations for a given error bound. The method is practical in real applications and overcomes traditional precision analysis pessimism, as it allows simultaneous selection of multiple word lengths and even some function approximation, primarily based on Taylor series. Starting from real-valued representation, such as Taylor series, we rely on arithmetic transform to explore maximum imprecision by a branch-and-bound search algorithm to investigate imprecision. We also adopt a new tight-bound interval scheme, and derive a precision optimization algorithm that explores multiple precision parameters to get an implementation with smallest area cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.