Abstract

The purpose of this study is to identify the effects of a stabilizer and matrix former in the development of a celecoxib dried nanosuspension (DNS) for high dissolution rate and drug loading. Tween 80 and Hydroxypropyl Methylcellulose (HPMC) were used as stabilizers in the bead-milling process and dextrin was used as the matrix former in the spray-drying. Various nanosuspensions (NS) were prepared by varying the ratio of HPMC and dextrin, and the physicochemical properties of each formulation were evaluated for particle size, morphology, drug loading, crystallinity, redispersibility, physical stability and dissolution rate. HPMC efficiently stabilized the NS system and reduced the particle size of NS. The mean particle size of the NS with 0.5% HPMC (w/v) was the smallest (248 nm) of all formulations. Dextrin has been shown to inhibit the increase of particle size efficiently, which is known to occur frequently when NS is being solidified. As the dextrin increased in DNS, the dissolution rates of reconstituted NS were significantly improved. However, it was confirmed that more than the necessary amount of dextrin in DNS reduced the dissolution and drug loading. The dissolution of celecoxib in DNS prepared at the ratio (drug:dextrin, 1:2.5) was almost the highest. The dissolution of optimal formulation was 95.8% at 120 min, which was 2.0-fold higher than that of NS dried without dextrin. In conclusion, these results suggest that the formulation based on Tween 80, HPMC and dextrin may be an effective option for DNS to enhance its in vitro dissolution and in vivo oral absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.