Abstract
Free tyrosine and tyrosine residues in various peptides and proteins are converted into dopa and dopa residues by tyrosinase (monophehol, L-dopa: oxygen oxidoreductase, EC 1.14.18.1) in the presence of reductants. The efficiency of the tyrosine-to-dopa conversion was examined under varied conditions, such as the substrate-to-tyrosine ratio, concentrations of reductant and oxygen in the reaction solution, pH, temperature and reaction time. The highest dopa yields were achieved with the following optimal conditions for hydroxylation: 0.1 M phosphate buffer at pH 7, 25 mM ascorbic acid, 1 mM tyrosine, 50 μg/ml tyrosinase and 20°C. Using these conditions, up to 70% of free tyrosine was converted into dopa, and tyrosine residues in several synthetic peptides were also hydroxylated to dopa residues at ratios as high as free tyrosine. The preparation of hydroxylated analogues of the decapeptide (Ala-Lys-Pro-Ser-Tyr-Pro-Pro-Thr-Tyr-Lys), in particular, may contribute to a better understanding of adhesion in the dopa-containing mussel glue protein
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.