Abstract
Industrially, the endothermic process of steam reforming is carried out at the lowest temperature, steam to carbon (S/C) ratio, and gas hourly space velocity (GHSV) for maximum hydrogen (H2) production. In this study, a three-level three factorial Box-Behnken Design (BBD) of Response Surface Methodology (RSM) was applied to investigate the optimization of H2 production from steam reforming of gasified biomass tar over Ni/dolomite/La2O3 (NiDLa) catalysts. Consequently, reduced quadratic regression models were developed to fit the experimental data adequately. The effects of the independent variables (temperature, S/C ratio, and GHSV) on the responses (carbon conversion to gas and H2 yield) were examined. The results indicated that reaction temperature was the most significant factor affecting both responses. Ultimately, the optimum conditions predicted by RSM were 775 °C, S/C molar ratio of 1.02, and GHSV of 14,648 h−1, resulting in 99 mol% of carbon conversion to gas and 82 mol% of H2 yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.