Abstract
The optimization process of hydrogen liquefaction process is complex and time-consuming. In order to solve the above problems and improve the solving efficiency of the optimization process, this paper proposed the method of using parallel genetic algorithm combined with simulation software for optimization. Parallel genetic algorithm effectively overcomes the premature convergence of standard genetic algorithm and has strong global search ability. The parallel processing accelerates the optimization process by 2.01 times, and saves 50.22% of the time compared with the serial calculation. It not only improves the solving speed, but also improves the solving quality and the calculation performance. After optimization, the specific energy consumption of the system is reduced by 52.26%, the exergy loss is reduced by 49.81%, the heat exchange efficiency is improved, and the process performance of the system is improved. This work has reference significance for hydrogen liquefaction process optimization using parallel genetic algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.